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ABSTRACT 
 

The open vehicle routing problem (OVRP) is a variance of the vehicle routing problem 

(VRP) that has a unique character which is its open path form. This means that the vehicles 

are not required to return to the depot after completing service. Because this problem 

belongs to the NP-hard problems, many metaheuristic approaches like the ant colony 

optimization (ACO) have been used to solve OVRP in recent years. The versions of ACO 

have some shortcomings like its slow computing speed and local-convergence. Therefore, in 

this paper, we present an efficient hybrid elite ant system called EHEAS in which a new 

state transition rule, tabu search as an effective local search algorithm and a new pheromone 

updating rule are used for more improving solutions. These modifications avoid the 

premature convergence and make better solutions. Computational results on sixteen standard 

benchmark problem instances show that the proposed algorithm finds closely the best 

known solutions for most of the instances in which ten best known solutions are also found. 

In addition, EHEAS is comparable in terms of solution quality to the best performing 

published metaheuristics. 
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1. INTRODUCTION 
 

The Open Vehicle Routing Problem (OVRP) is a famous important extension of the vehicle 

routing problem (VRP) that has many applications in industrial and services (Figure 1). The 
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description of this important variant of the VRP appeared in the literature over 30 years ago, 

but has just recently attracted the attention of scientists and researchers [1, 2]. Today, the 

OVRP is envisaged in a lot of practices such as the home delivery of packages and distribute 

newspapers. Furthermore, companies that use contractors to deliver newspapers to residential 

customers do not require the contractors and their vehicles to return to the depot. As a result, 

researcher interest in the OVRP has increased dramatically and a wide variety of new 

algorithms have been developed to solve the problem over the last ten years. This problem 

similar to VRP involves routing a homogeneous fleet of vehicles with fixed capacity Q that 

start to move simultaneously from the depot, but not come back to the depot after visiting 

customers. In other words, each route in the OVRP is a Hamiltonian path and maybe a route-

length constraint in order to limit the maximum distance traveled by each vehicle. Each 

customer has a known demand and is serviced by exactly one visit of a single vehicle. The 

objective is to design a set of minimum cost routes to serve all customers [3]. In addition, we 

need to find the minimum number of vehicles required to deliver goods to all of the customers.  

 

 
Figure 1. The versions of VRP 

 

From the point of view of graph theory, the difference of the OVRP with the VRP is that a 

solution is a set of Hamiltonian paths, rather than Hamiltonian cycles. On the other hand, the 

OVRP turns out to be more common than the VRP, in the sense that any closed version with 

n customers can be converted into an open version of VRP with n customers, but 

transformation in the reverse direction is not possible. Figure 1 shows the feasible solutions 

to both the open and closed version of VRP for the same input data in which all customers 

have unit demands and the vehicle capacity is four units. In general, this figure shows the 

fact that the feasible solution for the open version of the VRP can be fairly different from 

that for the closed version. In this figure, the depot is represented by a square and the 

customers by circles. 
 

 
Figure 2. Two different feasible solutions for the open and close versions of VRP 
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As it was mentioned before, the OVRP is a main problem happening in some distribution 

systems, the school bus. Therefore, it has attracted significant researchers and some 

algorithms have been proposed in order to solve effectively. Because finding of the best 

Hamiltonian path for each set of customers is NP-hard [4], the OVRP is also NP-hard. 

According to some shortcomings like its slow computing speed and local-convergence in 

ACO, the basic of this algorithm cannot directly apply to the problem with acceptable 

performance and few researchers have proposed new methods to improve the original ACO 

and applied them. Besides, although the development of modern meta-heuristics has led to 

considerable progress, every meta-heuristic algorithm has its own weakness and strength. 

Therefore, in order to achieve the effectiveness and efficiency of the proposed algorithms, 

much researchers has tried to improve the quest for the performance of hybrid algorithms. 

As a result, in this work, we proposed an efficient hybrid ant colony algorithm called 

EHEAS in order to improve both the performance of the algorithm and the quality of so the 

solutions.  

The proposed algorithm used ant colony optimization algorithms (ACO) for solving 

OVRP and then improved the global ability of the algorithm through importing new 

probability function of movement for constructing solutions, updating pheromone and using 

tabu search as an effective local search. The EHEAS algorithm in order to be not trapped at 

the local optimum, discover different parts of the solution space. The results in the fourteen 

instances proposed by Christofides, show that the proposed algorithm can obtain high 

quality solutions such that the average quality of Gap is 0.26% for these instances. Besides, 

the average quality of Gap for the EHEAS is 0% when only the travel distance was 

minimized while for the two instances proposed by Golden. The algorithm is, also, 

compared with a number of metaheuristic, evolutionary, local search and nature inspired 

algorithms from the literature. The experimental results have shown that the EHEAS 

algorithm is to be very efficient and competitive in terms of solution quality. 

The structure of the remainder of the paper is as follows. In the next section, related 

works on OVRP is presented and then a mixed integer linear programming of OVRP is 

presented. The proposed idea based on ant colony optimization (ACO) called EHEAS is 

specially explained in section 4. The EHEAS mainly consists of the iteration of the three 

steps, including each ant builds the solution independently, apply the local search algorithms 

to improve the solution, and update the global pheromone information. In this section, we 

describe each step in more details. In Section 5, the proposed algorithm is compared with 

some of the other algorithms on standard problems belonged in OVRP library. Some 

concluding remarks are given in the final section. 

 

 

2. RELATED WORKS 
 

Contrary to the VRP, the OVRP has only been considered by very limited people from the 

early 1980s to the late 1990s. However, several researchers have used some algorithms 

especially metaheuristic since 2000. So far as we know, the first author to declare the OVRP 

was Schrage in 1981 who dedicated to the description of realistic routing problems [5]. 

Nevertheless, the other earliest work that addressed to solve the OVRP seems to be that of 

Sariklis and Powell [6], who do not force a maximum route length. Because the OVRP 
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belongs to NP-hard problems, most of the practical examples of this problem cannot be 

solved by exact algorithms to optimality within reasonable time and the algorithms used in 

practice are the heuristic and metaheuristic algorithms. These approaches can find the 

optimal or near optimal solutions in within a reasonable computing time. For example, an 

efficient tabu search is proposed by Branda˜o [7] in which infeasibilities in middle solutions 

are managed through penalizing the objective function by two penalty terms including 

capacity violation and route length violation. A tabu search algorithm also is proposed by Fu 

et al. [8, 9] in which the initial solution is provided by a ‘furthest first heuristic’ and 

exchanges are based on the two-interchange generation mechanism. In this algorithm, a 

combination of vertex reassignment, 2-opt, vertex swap, and ‘tails’ swap within the same 

route or between two routes are used simultaneously. Tarantilis et al. offered a single-

parameter metaheuristic method for solving a version of the OVRP in which the objective is 

to minimize the total distance covered without attempting directly to decrease the number of 

vehicles [10]. Li et al. [11] develop a variant of record-to-record travel algorithm for the 

standard OVRP that avoids the premature convergence and found very good solutions in a 

short computing time.  

Also, Pisinger and Ropke [12] offer an effective metaheuristic based on adaptive large 

neighbourhood algorithm in which customers are removed randomly from the current 

position and reinserted in the place with cheapest possible route. Furthermore, for diversify 

and intensify the search, some removal and insertion heuristics are used. Moreover, several 

famous metaheuristics have been proposed for the versions of the OVRP involving only 

capacity constraints. For example, Tarantilis et al. offered a population-based algorithm and 

a heuristic based on threshold-accepting type for solving the OVRP in 2005 [13].  

Bodin et al. [14] defined the OVRP encountered by FedEx in generating open delivery 

routes for airplanes. In this problem, an airplane starts to move from Memphis, makes 

deliveries to several cities, and does not come back to Memphis. After that, the airplane rests 

in the last city on the delivery route and begins its pickups from that city. Fu et al. described 

two further areas of the OVRP applications involving the planning of train services and a set 

of school bus routes. In the first problem, train starts or ends at the Channel Tunnel and in 

the second problem pupils are picked up at various locations and brought to school in the 

morning. Besides, the routes are reversed to take pupils home in the afternoon. A description 

of a problem of express airmail distribution in the USA is defined by Bodin et al in 1983 in 

which there is an open pick-up and delivery VRP with capacity constraints and time 

windows. 

Bodin et al. describe a heuristic algorithm used by FedEx to develop an open route for 

each airplane. In this problem, drivers move to the FedEX depot each morning, load 

packages, and then make deliveries to residences, according to the couriers and vehicles 

which do not return to the depot after their last deliveries. Marinakis et al presented a 

relatively new swarm intelligence algorithm called the BBMO that simulates the mating 

behavior for solving the OVRP [15]. The main contribution of the work is that the equation 

which describes the movement of the drones outside the hive has been replaced by a local 

search procedure. For testing the quality of the algorithm, two sets of instances were 

considered and the obtained results show that the proposed algorithm found very satisfactory 

in most instances.  

A real-world problem is proposed by an international company in Spain and modeled as a 
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variant of OVRP by López-Sánchez et al [16]. In this problem, the maximum time spent on 

the vehicle by one person must be minimized. So, a metaheuristic algorithm in order to 

obtain high quality solutions is proposed. In order to analyze the algorithm, 19 school-bus 

routing problems of the literature on 9 hard real-world instances are considered. 

Brito et al. proposed the close–open VRP where the routes can be opened and closed 

[17]. This variant nowadays is a standard practice model in business. Furthermore, they 

formulate a model of this novel variant with time windows and a hybrid metaheuristic is 

proposed for its solutions. This algorithm is applied to a real problem with outsourcing. 

Finally, Erbao et al. proposed the OVRP with uncertain demands. In this paper, firstly the 

customer’s demand is described, and then an optimization model in order to achieve to 

minimize transportation costs is proposed. Also, they propose four strategies to handle with 

the uncertain demand and an improved evolution algorithm to solve the robust model. 

Furthermore, the performance of four different robust strategies is analyzed by considering 

the extra costs and unmet demand [18].  

The OVRP with decoupling points (OVRP-DP) introduced by  Atefi et al. [1] is faced by 

companies dealing with carriers to ship their goods over large territories. In this case, it may 

be profitable to use more than one carrier to perform a specific expedition: the first one 

leaves the depot and performs part of the deliveries, drops off all remaining load, and the 

second carrier continues from that point onwards. This drop off location is called the 

decoupling point of the route. This problem generalises the classical OVRP in which each 

route must be performed by only one carrier. Sevkli et al. [19] modeled and optimized a 

real-world newspaper delivery problem for a media delivery company in Turkey by reducing 

the total cost of carriers as real-world OVRP and proposed a new multi-phase oscillated 

variable neighbourhood search algorithm to solve it.  Hosseinabadi et al. [20] proposed a 

new combinatorial algorithm named OVRP_GELS based on gravitational emulation 

local search algorithm for solving the OVRP. They also used record-to-record algorithm 

to improve the results of the GELS. Niu et al. [21] described the mathematical model of 

the green OVRP with time windows based on the comprehensive modal emission model 

and designed a hybrid tabu search algorithm involving several neighborhood search 

strategies to solve this problem. They also performed the experiments on realistic 

instances based on the real road conditions of Beijing, China and analyzed the effect of 

empty kilometers  through comparing different cost components. Compared with closed 

routes, the open routes reduced the total cost by 20% with both the fuel emissions costs 

and the CO2 emissions cost down by nearly 30%. Also Niu et al. [22] proposed a green 

OVRP model with fuel consumption constraints for outsourcing logistics operations and 

presented a hybrid tabu search algorithm to deal with this problem. Yu et al. [23] 

proposed the open VRP with cross-docking in which a general example in retail is 

presented wherein the capital expenditure necessary in vehicle acquisition can become a 

burden for the retailer, who then needs to consider outsourcing a logistics service as a 

cost effective option. This practical scenario can be applied to create an open flow 

network of routes.   
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3. A MODEL OF OVRP 
 

From the graph’s theoretical viewpoint, the main difference between OVRP and VRP is 

finding Hamiltonian paths instead of Hamilton cycles. The OVRP is an extension of the 

basic VRP that can be described as follow:   

There is a set of customers geographically dispersed within a distance radius. Demand 

customers should be served through a set of vehicles with limited capacity. The aim is 

designing the least cost open routes for delivery of goods from a depot to a set of customers 

with the following conditions: 

 Each vehicle is not returned to the depot after visiting the last customer and the delivery 

process is ended as soon as the last customer is served. 

 The total demands of all customers in each route should not exceed of the capacity 

vehicle. 

 The routes must be designed such that each customer is visited only once by exactly one 

vehicle. 

 Two different objectives are used in OVRP, the first one is the minimization of the required 

number of vehicles and the second one is the minimization of the corresponding total traveled 

distance.  

Imagine  an incomple  graph 𝐺 =  𝑉, 𝐸 , where 𝑉 =  1,2, … , 𝑛  is the node set in which 

node 1 represents the depot, and nodes 2, … , 𝑛  represent the customers. 𝐸 = {(𝑖, 𝑗)|𝑖 ≠
𝑗 𝑎𝑛𝑑 𝑖, 𝑗 ∈ 𝑉} is the set of edges.  To present the mathematical formulation for the OVRP, 

we consider the below variables and parameters: 

                          𝑣:  number of serving vehicles. 
                            𝑛:  number of customer nodes  excluding the depot node . 
                              𝑞𝑖 :  demand of costumer 𝑖. 
                            𝑄𝑘 : capacity of the 𝑘th vehicle.                         
                             𝑐𝑖𝑗 : travel 𝑐𝑜𝑠𝑡𝑠 from customer 𝑖 to customer 𝑗. 

                             𝑤𝑘 : 𝑐𝑜𝑠𝑡 𝑜𝑓 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 𝑘 

 

𝑥𝑖𝑗
𝑘 =   

1    if vehicle 𝑘 travels from customer 𝑖 to customer 𝑗
0                                                                              otherwise

  (1) 

         𝑧𝑘 =  
1                                   if vehicle k is active
0                                                     Otherwise

  (2) 

 

If the company contracts its delivery or pick-up activities to external carriers, 

𝑤𝑘  represents the hiring cost of vehicle k and, in cases where company owns its own vehicle 

fleet, 𝑤𝑘  is a one-time cost and is related to the fixed costs for the acquisition of vehicle k. 

The vehicle k is active when it  services at least one customer. With these variables and 

parameters, the OVRP mathematical model is described as follows: 

 

min  𝑤𝑘𝑧𝑘

𝑣

𝑘=1

 (3) 
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𝑚𝑖𝑛   𝑐𝑖𝑗 × 𝑥𝑖𝑗
𝑘

𝑣

𝑘=1

𝑛

𝑗=0

𝑛

𝑖=0

 (4) 

  𝑥𝑖𝑗
𝑘

𝑛

𝑖=1

𝑣

𝑘=1

= 1   , ∀𝑗 = 2, … , 𝑛 (5) 

  𝑥𝑖𝑗
𝑘

𝑛

𝑗=1

𝑣

𝑘=1

= 1   , ∀𝑖 = 2, … , 𝑛     (6) 

𝑥𝑖𝑗
𝑘 ≤ 𝑧𝑘  , ∀𝑖, 𝑗 = 2, … , 𝑛 (7) 

 𝑥𝑖𝑢
𝑘

𝑛

𝑖=1

−  𝑥𝑢𝑗
𝑘

𝑛

𝑗=1

= 0  , ∀𝑘 = 1, … , 𝑣 , ∀𝑢 = 1, … , 𝑛 (8) 

 𝑞𝑖( 𝑥𝑖𝑗
𝑘

𝑛

𝑗=1

)

𝑛

𝑖=1

≤ 𝑄𝑘    , ∀𝑘 = 1, … , 𝑣      (9) 

 𝑥1𝑗
𝑘

𝑛

𝑗=2

≤ 1         ∀𝑘 = 1, … , 𝑣 (10) 

 𝑥𝑖1
𝑘

𝑛

𝑖=2

= 0            ∀𝑘 = 1, … , 𝑣 (11) 

 

Function (3) minimizes the total number of vehicles and the total travelled distance is 

minimized by function (4). Constraints (5) and (6) ensure that each customer is served 

precisely by only one vehicle. Constraint (7) confirm that all customers are serviced by 

active vehicles, and Constraints (8) are the typical flow conservation equations that 

guarantee the continuity of each vehicle route  .Constraints (9) confirm that demands of all 

customers on a route not  exceed the capacity of the vehicle. Equations (10) and (11) 

referred to the condition of the  OVRP in a delivery process that ensures any vehicle that 

departs from the depot, in order to service a sequence of customers, will not return to the 

depot 

. 

 

4. THE PROPOSED ALGORITHM 
 

The ant colony optimization (ACO) is one of the famous meta-heuristic algorithms used for 

solving combinatorial optimization problems that do not have a known effective algorithm. 

This algorithm was inspired by the behavior of real ant colonies in nature in order to find 

routes between their nests and food sources. As some ants travel, they deposit amount of 

pheromone trail that other ants are interested to follow them. This natural behavior of ants 

can be used to explain reasons that they can find the shortest path. Dorigo et al. used this 

concept and proposed the ACO to solve the combinational optimization problems in 1991 

[24]. One of the most important problems that the ACO is used for solving is TSP. Figure 3 

shows the steps of this algorithm in details.  
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Figure 3. The steps of ACO for solving the TSP 

 

In this section, a hybrid efficient elite ant system (EHEAS) is proposed to solve the 

OVRP. This EAS is strongly inspired by ant system (AS), achieves performance 

improvements through the introduction of new mechanisms based on ideas not included in 

the original AS. The proposed algorithm improved the EAS algorithm through ranking the 

solutions constructed by ants. Furthermore, several modifications as a method of update 

pheromone and using modified tabu search are used to more improve the EHEAS. These 

lead to avoid premature convergence and then search over the subspace. In other words, the 

EHEAS which uses the tabu search as an improved procedure has made three main 

contributions: 

1. The proposed EAS presents a new transition rule in order to find the better customer for 

each vehicle in every iteration. 

2. In addition to encourage the obtained best solution until now, the best solution in each 

iteration is considered and released with pheromone. 

3. The vast literature on algorithms tells us in order to find high-quality solutions by 

metaheuristics, a powerful local search algorithm is required. Therefore, to improve the 

best found solution until now of the proposed EAS algorithm, the tabu search is used as a 

local search algorithm until the best obtained solution is not improved for five iterations.  

4. The proposed tabu search algorithm comprises three kinds of neighborhood algorithms 

including 2-Opt, 0-1 and 1-1 exchanges. These moves are distinguished in terms of 

exchanges performed to convert one tour into another.  

5. To improve the TS further, the size of tabu list is considered minimum and maximum 
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values for the diversification and intensification policies respectively. 

The first phase of the EHEAS is solution construction in which for n groups, m ants are 

initially positioned on n vertices randomly and each ant of the colony efforts to build a 

solution represented as a single route. Then, ants use pheromone trail and heuristic information 

in order to obtain feasible solutions in the process of constructing solutions. Like AS, the next 

node j from node i in the route is selected by ant k among the unvisited nodes
k

iJ , according 

to the following transition rule in formula (12).  

 

( )
( ) ( )

( ) ( )

k

ij

k
i

ij ij k

i

ir ijr J

P t
t t

j j
t t

 

 

 

 


  


 (12) 

 

where ( )
ij

t is the amount of pheromone on the edge joining nodes i and j and ( )ij t  is 

defined as the savings of combining two nodes on one tour as opposed to serving them on 

two different tours. The savings of combining any two customers i and j are computed as

0 0ij i j ijc c c    where node 0 is the depot and
 ijc  denotes the distance between nodes i 

and j. Furthermore, and   are control parameters 

The pheromone updating of EAS includes local and global updating rules. Same the AS, 

the pheromone of all edges belonging to the route obtained by ants called local updating will 

be updated in EAS. In addition local updating, the EAS uses global updating after producing 

the best solution of n obtained solution for the problem in the current iteration. In other 

words, when the best solution of current iteration is found, the best solution until now is 

updated and if this solution is changed, the proposed modified tabu search is used to 

improve this solution more. After return the solution from tabu algorithm as the best solution 

until now, the global updating is applied. In more details, the arcs belonging to the best route 

until now (
*T ) and the best route obtained in the current iteration (

cT ) are released with 

pheromone and are encouraged with the constant coefficient e  in the following way; This 

process causes that the arcs belonging to the best route in any iteration and in current 

iteration are more highlighted, and to be updated according to the value of the best route
gbL

and 
cbL . Note that, the above operator indicates; the less the value of

gbL or 
cbL , the more 

pheromone released on the arcs. In the proposed algorithm when the best solution until now 

is changed, the modified tabu search algorithm is used in order to more improve the new 

solution. The modified tabu search will be described in details in the next sub-section. Thus 

the formula (3) shows the updating pheromone in the proposed algorithm. 

 

1

( 1) (1 ). ( ) ( ) ( ) ( )
ij ij ij ij ij

m
k gb cb

k

t t t t t


             (13) 

 

where  

: A parameter in the range [0, 1] that regulates the reduction of pheromone on the 

edges.  
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( ) :
ij

k t  The formula of local updating the pheromone which ants passing over the arc 

between nodes i and j, release some pheromone on it. The value of released pheromone is 

one over the value passed yet. 
* :cT and T The collection of arcs passed over by the ant with the best solution until now 

(the best solution in current iteration). 

 
*

*

/ ( ) ( , )
( )

0 ( , )

gb

gb

ij

e L t i j T
t

i j T



 







 (14) 

/ ( ) ( , )
( )

0 ( , )

cb c

vb

ij c

e L t i j T
t

i j T


 
 





  

(15) 

 

e  and e : constants coefficient determined by the ser. 

At this stage, the final condition is checked and if it is met, the algorithm ends. 

Otherwise, the algorithm is iterated by returning to transition rule step. To end the loop, two 

conditions must be met: the iteration of algorithm n times or the best found solution until 

now is iterated 10 time. These conditions are checked at the end of each algorithm iteration. 

If any one of the conditions is met, the algorithm ends and the obtained results and values up 

to now are considered as the best values and results of the algorithm. The Figure 4 shows the 

pseudo code of the EHEAS. 

 
Initialize pheromone trails; 

For u:=1 to nn do        // nn=number of nodes of the 
*s // 

Begin 

For i:=1 to nn do 

Begin 

Construct a solution St by using formula 12; Local update pheromone trails for is  

If *
( ) 

i
f s f then 

Begin 

     Apply Tabu search in 
i

s  

     
*

;
i

ss
  

//
*s  is the best solution found until now by the EHEAS//

 

            
*

: ( )
i

f f s ;  //
*

f is value of  
*s // 

End     // save the best so far solution // 

End; 

Global update pheromone trails for 
*s and the best solution in current iteration. 

If the best solution until now is not changed for ten iterations the Break. 

End 

*s  and 
*

f are shown. 

End // procedure // 

Figure 4. Pseudo code of EHEAS 
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4.1 The proposed tabu search 

The TS is one of the most powerful metaheuristic algorithms which is able to produce near 

optimal solutions within reasonable computing time. As a local search technique, TS moves 

from a current solution to the best solution in its neighborhood in order to escape from 

premature local optimum at each iteration. The main principle of this method is that the TS 

accepts a new solution which fails the current objective function value. The proposed TS 

(MTS) requires an initial solution so the best solution obtained until now in the EAS is 

considered as initial solution. The MTS comprises three types of neighborhood moves 

including 2-Opt, insert and swap moves. The most commonly encountered move is the 2-

Opt used in one or multiple route. In multiple routes, edges (i,i+1), and (j,j+1) which form a 

criss-cross and belong to different routes are considered and the 2-Opt move is applied.  

The insert move transfers a node from its position in one route to another position in a 

different route. In the swap move, two nodes from different routes are selected and changed. 

The same procedure is conducted in the case of multiple routes. It is noted that the moves 2-

Opt, insert and swap are approved if each one improves the objective function and satisfies 

in constraints. In the proposed algorithm, although all the customers are candidates to be 

moved, n numbers of neighborhoods are produced by the mentioned algorithms in which 30, 

35 and 35 percent of them belong to 2-Opt, insert and swap exchanges respectively. It is 

noted that these moves are not equally performed in each iteration for two below reasons: 

1. To diversify the search. 

2. To keep the computing time at reasonable levels. 

The Tabu List (TL) is one of the most important concepts of the TS. This list of the 

proposed MTS is used to prevent the return to the most recently visited solutions for a 

specific number of iterations (Tabu Tenure) in order to avoid cycling. On the other hand, 

some of the tabu solutions, which must now be avoided, could be of excellent quality and 

might not have been visited. To discount this problem, "aspiration criteria" is introduced and 

used. In the proposed algorithm, an aspiration criterion is defined as solution which has 

better quality than the current best solution. In other words, the proposed algorithm moves 

from the current solution to the best solution in its neighborhood that should be not in the TL 

or satisfies some aspiration criteria.  

In order to more improve quality of the proposed algorithm, a good balance between 

intensification and diversification are required in the proposed algorithm. For a strong 

diversification technique in the proposed algorithm, the size of TL is considered as a 

variable. In more details, if the MTS cannot improve the best known solution for a pre-

specified number of iterations, direction of the proposed algorithm should change towards a 

part of solution space which has not been explored yet (diversification policy). Therefore, 

the length of TL is increased. After the diversification policy, the search process is increased 

by declining the value of the TL for a number of consecutive iterations. At this stage, if the 

TS cannot improve the solution for five iterations, the final solution is returned to the EAS. 

The pseudo code of the proposed MTS is shown in Figure 5.  
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Function Output s1=(Input s)                

s1=s;  //s1 is the best solution of the algorithm 

Find neighborhood function N(s), tabu list T(s) and aspiration condition A(s). 

Repeat    //main cycle 

 Find the best feasible solution s0 in {N(s)-T(s)+A(s)}; 

               s=s0;                                         //replace the current solution by the new one. 

 If f(s) < f(s1) then s1=s;            //save the best so far solution. 

 Update neighborhood function N(s), tabu list T(s) and aspiration condition A(s); 

Until the s1 is not changed for five iterations. 

Figure 5. Pseudo-code of the proposed tabu search algorithm 

 

 

5. COMPUTATIONAL EXPERIMENTS 
 

The algorithm has been implemented in C programming language and run on a 3.5 GHz 

Intel Pentium 3 processor and 4 GB of RAM running Microsoft Windows 7 Ultimate. There 

are 16 test problems identified by their original number, prefixed, respectively, with the 

letters C and F available in the literature and they are summarized in Table 1. The fourteen 

problems denoted C1–C14 are taken from Christofides et al. in 1979 [3], and two problems 

represented F11-F12 in 1994a [14] are taken from Fisher [6]. The cost of an edge is then 

taken to be equal to the Euclidean distance and computed with real numbers. We had to 

make a decision concerning precision in the computation of these distances. In this table, 

some of the characteristics of problems are described in which the first row gives the 

instance name, the second row shows the number of customers, and the third row presents 

the number of used vehicles. In other words, the value of k has been estimated, the sum of 

all customers demands/vehicle capacity, and the value of L denotes the maximum route 

length. Seven of the problems have a route-length restriction. The number of customers 

ranges are in size from n = 50 to n = 199 customers. Furthermore, the problems C1–C5, 

C11, C12, F11 and F12 have no driving time constraint, and C6–C10, C13 and C14 are as 

same as C1–C5, C11 and C12, but with a travel time constraint. All problems are available 

online (see www.branchandcut.org). 

 
Table 1: Characteristics of the test problems 

 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 F11 F12 

n 50 75 100 150 199 50 75 100 150 199 120 100 120 100 71 134 

k 5 10 8 12 16 5 10 8 12 16 7 10 7 10 4 7 

L - - - - - 180 144 207 180 180 - - 648 936 - - 

 

To show the EAEAS’s performance more clearly, we present the best known solutions 

(BKS) published in the related literature in Table 2. In this table, Column 2 shows the best 

algorithms gaining minimum vehicles with the least distance. Furthermore, the column 3 

refers the best algorithms gaining minimum distance with the least number of vehicles for all 

of the instances. It is noted that some algorithms used different number of vehicles shown in 

the brackets in this table and Table 3. We compare the results obtained by the proposed 

algorithm on the above-mentioned instances with some algorithms as follows: 

 TSF and TSR based on tabu search by Fu et al. [8, 9] 
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 TSAN based on tabu search by Brandao [7]  

 BR based on tabu search by Tarantilis et al. [10] 

 ALNS 50K based on adaptive large neighborhood search used the minimum spanning 

tree by Pisinger and Ropke [12] 

 ORTR used large neighborhood algorithm by Li et al. [11].  

 LBTA and BATA based on threshold accepting by Tarantilis et al. [10, 25] 

 VNS based on a variable neighborhood Search by Fleszar et al. [26] 

In more details, Fu et al. generates a starting solution in two different ways, and hence 

there are two variants of his TS procedure (denoted by TSR and TSF). Although Pisinger 

and Ropke run ALNS for 25,000 iterations and 50,000 iterations, in this table only the 

results of 50,000 iterations are presented denoted by ALNS 50K. Li et al. developed a 

record-to-record travel algorithm to handle very large instances of the standard VRP to solve 

the OVRP denoted by ORTR. Finally, Tarantilis et al. proposed two algorithms using 

threshold accepting in the name of LBTA and BATA. 

 
Table 2: Characteristics of the test problems 

Instance k 
Minimum vehicles 

with least distance 

Minimum distance with 

least number of vehicles 

C1 5 408.5 TSF 408.5 TSF 

C2 10 567.14 ALNS, ORTR, VNS 564.06 [11] 
BR, BATA, 

LBTA, TSR 

C3 8 617 TSR 617 TSR 

C4 12 733.13 ALNS, ORTR, VNS 733.13 ALNS, ORTR, VNS 

C5 16 879.37 BATA 870.26 [17] LBTA 

C6 5 400.6 [6] TSF 400.6 [6] TSF 

C7 10 583.19 ALNS 560.4 [11] TSR 

C8 8 638.2 [9] TSF 638.2 [9] TSF 

C9 12 757.84 [13] ALNS 752.0 [14] TSR 

C10 16 875.67 [17] ALNS, VNS 875.67 [17] ALNS, VNS 

C11 7 682.12 ALNS, VNS 682.12 ALNS, VNS 

C12 10 534.24 

BR, BATA, 

LBTA, ALNS, VNS, 

ORTR, TSAN 

534.24 
ALNS, VNS, ORTR, 

TSAN 

C13 7 909.80 [11] ALNS 896.50 [12] 
BR, BATA, 

LBTA, ORTR 

C14 10 591.87 [11] ALNS, VNS, ORTR 591.87 [11] ALNS, VNS, ORTR 

F11 4 175.0 TSR 175.0 TSR 

F12 7 769.66 ORTR, VNS 769.66 ORTR, VNS 
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Table 3: Results of the EHEAS compared to other metaheuristic algorithms 

Instance n 
TSF [9] TSAN [8] ORTR [12] 

BKS 
Cost Time Cost Time Cost Time 

C1 50 408.5 170.2 438.2 1.7 416.06 6.2 408.5 

C2 75 587.8 202.1 584.7 4.9 567.14 31.3 564.06 [11] 

C3 100 644.3 719.9 643.4 12.3 639.74 39.5 617 

C4 150 734.5 1610.3 767.4 33.2 733.13 128.6 733.13 

C5 199 878.0 [17] 2060.5 1010.9 116.9 924.96 380.6 870.26 [17] 

C6 50 400.6 [6] 128.0 416.0 1.4 412.96 10.3 400.6 [6] 

C7 75 565.7 [11] 292.4 581.0 [11] 3.4 568.49 [11] 32.2 560.4 [11] 

C8 100 638.2 [9] 987.8 652.1 10.4 644.63 53.2 638.2 [9] 

C9 150 758.9 [14] 1635.2 827.6 [14] 25.2 756.38 [14] 195.1 752.0 [14] 

C10 199 891.3 [18] 1922.2 946.8 100.1 876.02 363.5 875.67 [17] 

C11 120 753.8 735.8 713.3 15.7 682.54 121.6 682.12 

C12 100 549.9 413.4 543.2 7.8 534.24 32.9 534.24 

C13 120 943.0 [12] 741.1 994.3 25.8 896.50 [12] 120.3 896.50 [12] 

C14 100 586.8 [12] 463.2 651.9 [12] 8.1 591.87 62.9 586.8 [12] 

F11 71 178.0 256.0 179.5 5.7 177.00 19.5 175.0 

F12 134 789.7 1044.8 825.9 32.7 769.66 158.2 769.66 

Instance n 
ALNS 50K [13] VNS [22] EHEAS 

Cost Time Cost Time Cost Time 

C1 50 416.06 230 416.06 17.6 408.5 5.21 

C2 75 567.14 530 567.14 29.0 567.14 15.38 

C3 100 641.76 1280 639.74 239.6 617 35.71 

C4 150 733.13 2790 733.13 585.0 738.90 65.81 

C5 199 896.08 2370 905.96 292.1 879.37 95.59 

C6 50 412.96 310 412.96 75.8 407.96 6.74 

C7 75 583.19 330 596.47 22.3 560.4 [11] 18.63 

C8 100 645.16 1140 644.63 587.6 638.2 35.11 

C9 150 757.84 1850 760.06 1094.1 752.00 [14] 59.93 

C10 199 875.67 2240 875.67 1252.4 875.67 73.52 

C11 120 682.12 1410 682.12 231.6 682.12 38.98 

C12 100 534.24 1180 534.24 163.7 534.24 32.51 

C13 120 909.80 1160 904.04 1820.1 896.50 [12] 41.34 

C14 100 591.87 750 591.87 389.0 586.8 [12] 35.51 

F11 71 177.00 1040 178.09 140.2 175.00 11.31 

F12 134 770.17 3590 769.66 1237.5 769.66 45.31 

 

The objective of the computational experiments is to test the performance of the EHEAS 

in terms of quality of the solutions and compare its performance with several famous 

metaheuristic algorithms. As a result, 16 instances are considered in Table 3 and the 

efficiency and performance of the EHACS is compared with some different meta-heuristic 

algorithms given in the literature for solving the OVRP. In this table, each algorithm 

consists of two sub-column including the best gained solution and CPU time. All the CPU 
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times reported in the Table are in seconds. Furthermore, the last column shows best known 

solution (BKS) by the various algorithms until now. Since papers on the OVRP tend to 

report results only for the floating point versions, in this paper we do the same. 

This table shows that the proposed algorithm can be used to solve the OVRP effectively 

because among the 16 test problems, the EMEAS finds 10 optimal solutions published in the 

literature and obtains nearly the BKS for instances C2, C4, C5 and C6. Furthermore, the 

maximum relative error is 1.84% for the instance C6 and the average relative error is 0.26%. 

It is noted that for each problem of this table, the proposed algorithm used the minimum 

number of vehicles as specified by the lower bound of K. in addition, a simple criterion to 

measure the efficiency and the quality of an algorithm is to compute the number of optimal 

solutions found in specific benchmark instances by algorithm. As can be seen from table 3, 

the best algorithm except the EHEAS is VNS that finds the optimal solution for 5 out of 16 

problem instances published in the literature. Besides, TSF, TSAN, ORTR and ALNS 50K 

can find 4, 0, 4 and 4 optimal solutions thorough of these instances. These results indicate 

that EHEAS is a competitive approach compared to mentioned algorithms and are much 

better than the result of these algorithms. 

Another criterion for testing efficiency of the proposed algorithm is to compute mean 

Gap and compare it to other algorithms. The Gap is computed by using formula (16) where 

the BKS is the best solution found by the algorithm for a given instance on the Web. A zero 

gap indicates that the best known solution of instance is found by the algorithm. 

 

Gap=((the best solution found by an algorithm-BKS)/BKS)*100 (16) 

 

As it can be seen from Table 2, although the mean Gap for the EHEAS is 0.26%, this 

criterion is 2.27%, 6.38%, 1.29%, 1.37%, 1.58% for the TSF, TSAN, ORTR, ALNS and VNS 

respectively. As a result, the proposed algorithm is a competitive approach compared to 

mentioned algorithms and has a consistent performance, since the average gap between the 

best obtained solutions and the average obtained solutions was better than five other 

algorithms. Moreover, the ORTR performs better than ALNS and the ALNS obtains much 

better solution than VNS. Therefore, The algorithms in terms of their performance of mean 

Gap from the worst to the best are: TSAN, TSF, VNS, ALNS, ORTR and EHEAS. Figure 6 

shows the Gap for each instances obtained by our algorithm and five other metaheuristic 

algorithms. As see in this figure, With the exception of C2, C4, C5 and C6, the EHEAS 

obtains the gap with zero value for instances. However, in other instances, the proposed 

algorithm finds nearly the BKS, i.e. the Gap is, relatively as high as 1%. The performance 

Comparison of results shows that the proposed algorithm clearly yields better high quality 

solutions than the others for more instances. However, as noted in [27], direct comparisons of 

the required computational times cannot be conducted, as they strictly depend on several 

factors including the processing power of the computers, the coding abilities of the 

programmers, the programming languages, the compilers and the running processes on the PC.  

 

 

6. CONCLUSION 
 

The OVRP is different from most variants of vehicle routing problems from the literature in 
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that the vehicles do not return to the depot after delivering the last customer. The practical 

importance of the OVRP has been established some years ago, but it has received very tiny 

attention from scientists and researchers. In this research we created an effective hybrid EAS 

called EHEAS that is able to find very good solutions for the OVRP in a very short 

computing time. We have introduced some modification to improve the algorithm such as 

using modified tabu search algorithm. Besides, we compare its performance with other 

meta-heuristic algorithms designed for the same purpose, which has been published recently. 

The result shows the proposed algorithm is the efficiency for the OVRP. We are convinced 

that this technique would be applied in some versions of vehicle routing problems such as 

vehicle routing problem with pickup and delivery or general vehicle routing problem in the 

future. 

 

 
Figure 6. Comparison Gap of the metaheuristic algorithms 
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